
Marshaling and Unmarshaling Models Using
the Entity-Relationship Model*

Fei Cao, Barrett R. Bryant,
Wei Zhao, Carol C. Burt

Department of Computer and Information Sciences
University of Alabama at Birmingham

1300 University Boulevard, Birmingham, AL 35294, USA
 {caof, bryant, zhaow, cburt} @cis.uab.edu

Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science
Indiana University-Purdue University-Indianapolis

723 W. Michigan Street SL 280, Indianapolis, IN 46202, USA
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston

Computer Science Department
Naval Postgraduate School

1 University Circle, Monterey, CA 93943, USA
maugusto@nps.edu

ABSTRACT
Software systems are usually designed and documented with the aid
of visual modeling notations. Visual modeling notations keep
evolving over the years in tandem with visual modeling tools, and
the tight binding in between impedes the exchanging of modeling
assets, which causes a spatial isolation of the models. Another
problem with legacy software models is that they are isolated
temporally in the early phases of the software engineering life cycle
without reaching out to the later phases. This paper presents an
approach for breaking both spatial and temporal isolation of
software models by marshaling and unmarshaling models using the
Entity-Relationship (ER) model, thus providing a promising way for
evolving model-driven software development.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques

Keywords
Marshaling and unmarshaling models, Modeling and meta-
modeling, Entity-Relationship model

1. INTRODUCTION
Software systems are usually designed and documented with the aid
of visual modeling notations. Visual modeling notations keep
evolving over the years in tandem with visual modeling tools, and
the tight binding in between impedes the exchanging of modeling
assets. Above all UML1 stands out as the de facto standard modeling

* This research is supported by the U. S. Office of Naval Research
under the award number N00014-01-1-0746.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

language. But other non-UML based modeling notations abound as
evidenced in such publications as JVLC2. Meanwhile, a lot of work
has been done to converge the diagram notations in the new version
of modeling notations, as is mentioned in the recent interview with
Keith Short3. But to converge all the legacy software modeling
assets by reengineering into new generation notations and totally
discarding old legacy modeling notations is not only time-
consuming, but also not cost-effective. Depending on different usage
scenarios, there is a need for marshaling models across different
modeling facilities to take advantages of the leverages provided by
existent modeling facilities.

The term Marshaling comes from the distributed computing area
where heterogenous data types are always translated into some
common data type over the network so as to be consumed at the
other end of the distributed environment, where the common data
type is unmarshaled again into another environment-specific data
type. Here we use the ER model [2] to represent the “common data
type”, i.e., the intermediate model when exchanging and evolving
models. The rationales are as follows:
- Sufficiency. Even though UML is widely adopted in software
modeling, which seems to justify the use of UML as a common
model for exchanging model assets across modeling facilities, UML
is not convenient for model serialization, thus not fit for modeling
asset exchange and evolution. In fact, the object diagram [1], for
which UML is used to capture and store the snapshot of software
system state, is represented virtually in an Entity (object) and
Relationship (links) model. Moreover, the UML modeling language
has its roots in the ER model, and the latter is already widely used as
the foundation for CASE tools in software engineering and
repository systems in databases4.
- Necessity. Not only models, but also meta-models are in need of
exchanging and evolution; the justification for the latter is obviously
the same as the former. Therefore, the intermediate model should be

1 Unified Modeling Language-http://www.omg.org/uml
2 Journal of Visual Languages and Computing-http://www.elsevier.
com/locate/jvlc
3 Interview with Keith Short, http://www.theserverside.net/talks/
library.tss#KeithShort.
4 http://bit.csc.lsu.edu/~chen/chen.html

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Marshaling and Unmarshaling Models Using the Entity-Relationship
Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proc. the 20th Annual ACM Symposium on Applied Computing (SAC 2005), Santa Fe, New Mexico,
March 13 -17, 2005, pp. 1553-1557

14. ABSTRACT
Software systems are usually designed and documented with the aid of visual modeling notations. Visual
modeling notations keep evolving over the years in tandem with visual modeling tools, and the tight
binding in between impedes the exchanging of modeling assets, which causes a spatial isolation of the
models. Another problem with legacy software models is that they are isolated temporally in the early
phases of the software engineering life cycle without reaching out to the later phases. This paper presents
an approach for breaking both spatial and temporal isolation of software models by marshaling and
unmarshaling models using the Entity-Relationship (ER) model, thus providing a promising way for
evolving model-driven software development.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3. THE APPROACH expressive enough to be at the meta-meta model level in the meta-
level stack [3]. The meta-meta-model is described by the Meta
Object Facility (MOF)5, which is a set of constructs used to define
meta-models. The MOF constructs are the MOF class, the MOF
attributes and the MOF association. These constructs correspond to
an ER representation (by using an Entity to represent a MOF class),
which indicates that the ER representation is semantically equivalent
to MOF fundamentally. Therefore, we believe the ER representation
is the right vehicle to play the dual roles of marshaling both models
and meta-models to break the spatial isolation of software models.
Also, other non-UML based languages, even though not as popular,
are abundantly present, for which UML is not an omnipotent cure.

3.1 A Web Services Modeling Example
Modeling Web Services (WS) is a promising way for service
description and orchestration at a higher level. As the scope of this
paper is about marshaling and unmarshaling models, the elicitation
of models from requirements is skipped here.
One of the characteristics of a meta-model is that it treats not only
the models, but also the inter-relationships among models as first-
class entities. We derive meta-models by abstracting models and
their inter-relationships. Therefore, for the models, even though they
are represented as UML diagrams here as the starting point of the
marshaling/unmarshaling process, they will not compromise the
generality of the approach as is described in the remainder of the
paper. To be specific, our approach of marshaling and unmarshaling
WS models consists of two steps:

Recent years have seen the emergence of the Model Integrated
Computing (MIC) [7] paradigm, which moves a step further to break
the isolation of models from implementation and the subsequent
phases in the software engineering life cycle. In MIC, a meta-model
is created to define a model construction language, and a generator
is also to be created based on the meta-model to synthesize the
constructed models by traversing the model tree. In this way, a
model can be more accurately interpreted for code generation than
the direct mapping-based approach such as using profiler or
stereotype in Rational Rose [3]. Toward that end, this paper presents
an approach for marshaling software models to ER models, which,
by taking advantage of the dual roles of ER models, are unmarshaled
into an environment-specific meta-model to be integrated into MIC.
Consequently, not only the spatial isolation, but also the temporal
isolation of software models can be broken.

1) Marshal models by converting the OO class diagram to an
ER-based meta-model, for which the relationship
corresponds to aggregation, association, generalization,
and dependency, while the entity corresponds to class.

2) Unmarshal models by mapping the ER-based meta-model
to the tool-specific (here GME in particular) meta-model
to create a WS modeling environment.

The UML class diagram of WSDL elements is shown in Figure 2.

b in d in g

p o r t T y p e o p e r a t io n

1 . . * 1

in p u t o u t p u t

p a r t

t y p e

1

1 . . *

s e r v ic e

p o r t

m e s s a g e

1

1 . . *

This paper is organized as follows: Section 2 briefly provides an
overall picture of this approach. Section 3 uses Web Services (WS)
[5] modeling as a proof-of-concept example to illustrate the whole
process. Section 4 describes the related work. We conclude in
section 5 with a brief description of future work included.

s

2. OVERVIEW
Figure 1 shows the process of marshaling and unmarshaling models.
Generic Modeling Environment (GME) [4] is the tool for MIC
paradigm, and we use it as the targeted tool environment for
describing destination meta-models, whereupon the domain-specific
modeling environment can be constructed. Through the process flow
as is directed by the arrows, meta-models can be elicited from
models with an automatable process as opposed to traditional
practice, for which the meta-model is constructed in an error-prone,
ad-hoc way. Consequently, models of legacy systems can be evolved
toward the MIC paradigm for model-driven software development.

 M odel

E R M odel

dom ain specific m ode lM 1:

M 2:
m a rsh a l G M E M e ta - M o d e l

M 3:

u nm arsh a l

Figure 1. Marshaling and unmarshaling models

5 Meta-Object Facility - http://www.omg.org/technology/documents/
formal/mof.htm

 Figure 2. The architecture of WS description element

The WS messages, which are either input or output messages, are
composed of parts, each of which corresponds to a specific data
type. The portType is an abstract WS interface definition, where
each contained element, i.e., the operation, defines an abstract
method signature. The operation uses messages as its parameters.
Binding represents an instantiation to the abstract portType with
concrete protocol and data type. Service is a collection of ports,
denoting a deployment of a binding at a specific network location.

3.2 Marshaling the WSDL Model
Figure 3 gives the meta-model of WSDL in ER form (without
considering the extension part enclosed with the dashed lines),
which is derived by representing the links (association,
generalization, dependency) in the class diagram in Figure 2 as a
relationship in Figure 3, as well as representing those classes as an
entity accordingly. Note we ignore type in the meta-model of Figure
3, because we can put type directly as the attribute of the part
element. Also note we will not annotate the attributes to the entities
and relationships in the ER representation as the focus here is about
the model marshaling and unmarshaling; the attributes will be
annotated in the GME meta-model as shown later.

When modeling WSDL for real business domain services
implemented with specific technology, we use the generalization
relationship to extend those WSDL elements in Figure 3 rather than
embedding the business domain service information as attributes to
those WSDL elements. This avoids obfuscation of business and

serv ice

port b ind ing

portT ype operation

m essage

inpu t output

1..* 1

1 ..*

1
1 ..*1

1

1 ..*

R M I J2E E C O R B A

Q oS

1

1..*

depos it w ithdraw
transfer

query

verifica tion

aggregation genera liza tion assoc ia tion

check ing saving

B ankA ccount P ersonalA ccount

part1 1 ..*

ext 1

ext 2
ext 3

ext 4

n
Figure 3. The ER-based meta-model of banking Service WSDL: the three parts enclosed with

SDL meta-model.

A

Fig. 4. the Banking Domain Service Descriptiodashed line represent the extended part to the W
B A B A B

case 1 case 2 case 3

aggregation generalization association

Figure 4. The cases of mapping from ER-based Meta-model to GME-
based meta-model based on the relationship in ER representation.

Figure 5. The meta-model of banking domain WSDL in GME

technology domain structure (meta-models of business/technology
domain applications) with WSDL elements, and provides a
separation of concerns toward domain-specific model refinement.
The business domain information applies a generalization
relationship to the operation entity, and technology domain
information applies a generalization relationship to the binding
entity. To exemplify, below is a simple banking domain service
specification:
 A bank provides the service for users to
set up accounts. Account information includes
personal data including Name, SSN, phone
number, address, and account data including
Account Number, PIN, Transaction Record,
Balance. There are two types of accounts:
checking account and savings account.
 For the bank side, it provides such
services as: Account Verification, Account
Query, Deposit, Withdraw, and Transfer.
 The banking service implementation may use
such technology as RMI, J2EE, and CORBA. Also
it will enforce some Quality of Service (QoS)
requirements such as Availability,
Dependability, Capacity.

Figure 3 shows the ER-based meta-model of this banking service
WSDL (including those parts enclosed by dashed line). The
elicitation of models from natural language requirements is beyond
the scope of this paper. As can be seen from the figure, a typical
business domain service represented as WSDL involves the
extension of ER elements, which is associated to almost all the
elements of WSDL. Nevertheless, by using the ER-based meta-
model, such extension still keeps the original WSDL meta-model as
shown in Figure 3 without being restructured.

3.3 Unmarshaling the WSDL Model
In GME, the containment relationship is represented by using a
model element (tagged with <<model>>), which, in contrast to an
atom element (tagged with <<atom>>), can contain other modeling
elements. Also the contained elements can be promoted as ports of
the model to have direct connections with external modeling
elements. GME uses a root model as an entry point of access to all
the modeling elements. Also, the relationship of ER is represented
in GME as a first-class modeling element, connection (tagged with
<<connection>>), with a connector in the form of a dot to associate
this relationship with two modeling elements (entities).
 The mapping from the ER-based meta-model to the counterpart
in GME is based on the relationships in the ER representation. Three
cases are involved as is shown in Figure 4:

1) A contains B
In this case, A can be modeled as a model element in GME
containing B.

2) B is associated to A
In this case, a connection can be added to be associated with the A
and B representations in GME. The connection element can be
named with respect to A’s or B’s properties as a kind of tag, e.g., the
tag can be named as the combination of both A’s name and B’s
name. Note when the situation as described in case 3 applies, then
this tag should be named as in case 3.

3) B is specialized from A
In this case, A is rendered by an abstract FCO (First Class Object,
tagged with <<FCO>>, represents an abstract generalization of
other modeling constructs), a modeling element to be used as an
abstract interface in GME, and B is represented as an inherited class
to that FCO. Note there are two special treatments here: firstly, for
the input/output elements of Figure 3, they are only used to tag the
connection (named either “input” or “output”) between message
entities and its interconnecting entities in GME; secondly, the
generalization relationship between binding and portType is actually
treated as an association when modeling in GME, because the
binding entity actually attaches values of the chosen protocol to the
portType in WSDL rather than in the real sense of inheritance.

Figure 5 shows the meta-model created by mapping from the WSDL
meta-model of the banking domain with ER representation to that in
the GME strictly observing the above mapping rules. The model
WebService corresponds to the service entity in Figure 3. The boxed
part of the models in Figure 5 are attributes for the related models to
be instantiated in the modeling phase, described in the next section.

3.4 The Domain Specific Modeling Environment
After a meta-model is derived by marshaling and unmarshaling
models, a domain specific modeling environment (which is also a
crucial part of MIC) can be created based upon the meta-model. To
complete the description of the model evolution process shown in
Figure 1, Figure 6 shows the screenshot of the banking-domain WS
modeling environment based on the meta-model illustrated in Figure
5. The lower-left corner provides the modeling elements that can be
dragged and dropped in the upper-left pane for constructing a
banking service model. The names of the models in the lower-left
pane represent the meta-model names (kind names); when those
models are dragged to the above pane, the model name can be
changed to reflect the meaning of the model in the domain-specific
context, which we call a context name. Furthermore, the domain-
specific model can be traversed and interpreted in terms of code
generation using the GME Builder Object Network (BON)
framework [4].

4. RELATED WORK
The ER model, because of its powerful modeling capacity, can be
used as an intermediate form for model-to-model and meta-model-
to-meta-model exchange. Because of the dual role that the ER model
can play, it is treated as an intermediate form for model-to-meta-
model elicitation, which is the theme of this paper. This idea is very
similar to grammar inference [6], where a grammar can be inferred
from language examples. But the two approaches are applied at
different abstraction levels. XMI6 provides a standard mapping
from MOF-based nodels to XML, which can be exchanged between
software applications and tools. In comparison, ER-based model
marshaling and unmarshaling represents a design-level approach for
evolving design assets, without being restricted to low-level data
representation specifics. Also, note that the XMI-based approach
uses top-down mapping, while the ER-based approach uses bottom-
up mapping as is illustrated in Figure 1, which offers a means for
meta-model recovery for evolving legacy software models into
Model Integrated Computing.

6 XML Metadata Interchange - http://www.omg.org/technology/
documents/formal/xmi.htm

Figure 6. The banking domain-specific WS modeling environment.

Model Driven Architecture (MDA)7 is about mapping Platform
Independent Models (PIM) to Platform Specific Models (PSM) for
engineering legacy software systems so as to be integrated into new
platform. However, the core part of mapping technology for MDA is
either ad-hoc or pre-mature before MDA can be fully adopted in
industry. ER-based model marshaling and unmarshaling offers a
potential solution to address this problem systematically. It has been
observed that ER representation has been adopted in defining
Knowledge Discovery Meta-Model (KDM)8 and Ontology Definition
Meta-Model (ODM)9 in OMG, which underscores the role that ER
plays for model marshaling and unmarhaling.

5. CONCLUSION AND FUTURE WORK
Legacy software models are widely existent and heterogeneous in
their own graph syntax, and there are two types of isolation in its
application: Spatially, models are isolated from being exchangeable
over software applications and tools; Temporally, models are isolated
in the early phases of the software engineering life cycle. These two
types of isolation status of software models restrict their usability and
capacity. Toward that end, a model marshaling and unmarshaling
approach is presented based on the ER model, a simple, yet powerful
modeling notation. This approach offers a promising way to break not
only spatial isolations, but also temporal isolation by evolving legacy
software models toward MIC for fully exploiting models throughout
the software engineering life cycle. In particular, this paper uses a WS
modeling example to illustrate an automatable process on how legacy
software models can be migrated toward a MIC-oriented
environment.

To ultimately automate the marshalling and unmarshaling process,
future work will involve representing various models as well as ER
models in the form of proper XML specifications, whereupon the
automation process can be applied by XML transformation

technology such as XSLT10. The ER model is easy to be represented
in XML because of its simple structure. An Eclipse-based ER
modeling tool such as [8] that can generate XML specifications from
ER models will be helpful in this regard. The models in GME can be
exported and imported as XML. Therefore, an XML specification for
an ER-model can be directly transformed to the expected XML
specification for destination meta-models and loaded into GME
consequently. Note that the simple structure of ER models does not
require an XMI–based data representation. Moreover, such existent
tool as GME does not use XMI for model serialization and
deserialization, for which a simpler and more flexible XML schema is
desired for marshaling and unmarshaling models.

6. REFERENCES
[1] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling

Language User Guide. Addison-Wesley, 1999.
[2] P. P. Chen. The Entity-Relationship Model: Toward a Unified

View of Data. ACM Trans. Database Systems, 1(1), 1976, 9-36.
[3] D. S. Frankel. Model Driven Architecture: Applying MDA to

Enterprise Computing. Wiley, 2003.
[4] GME 2000 User’s Manual, Version 2.0. ISIS, Vanderbilt

University, 2001.
[5] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y.

Nakamura, R. Neyam. Building Web Services with Java. SAMS,
2002.

[6] C. de la Higuera. Current Trends in Grammatical Inference. In
Proc. Joint IAPR Int. Workshops SSPR & SPR 2000, 2001, 28-
31.

[7] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J.
Sprinkle, and G. Karsai. Composing Domain-Specific Design
Environments. IEEE Computer, 34(11), 2001, 44-51.

[8] S. Zhou, C. Xu, H. Wu, J. Zhang, Y. Lin, J. Wang, J. Gray, B.
R. Bryant. E-R Modeler: A Database Modeling Toolkit for
Eclipse. In Proc. 42th ACM Southeast Conf., 2004, 160-165.

7 http://www.omg.org/mda/
8 http://www.omg.org/cgi-bin/doc?lt/2003-11-4

 9http://codip.grci.com/odm/draft/submission_text/ODMPrelimSubAu
g04R1.pdf 10 http://www.w3.org/TR/xslt

	4. RELATED WORK

